37 research outputs found

    Effects of Disorder in a Dilute Bose Gas

    Full text link
    We discuss the effects of a weak random external potential on the properties of the dilute Bose gas at zero temperature. The results recently obtained by Huang and Meng for the depletion of the condensate and of the superfluid density are recovered. Results for the shift of the velocity of sound as well as for its damping due to collisions with the external field are presented. The damping of phonons is calculated also for dense superfluids. (submitted to Phys.Rev.B)Comment: 21 pages, Plain Tex, 2 figures available upon request, preprint UTF 31

    Quantum simulations of the superfluid-insulator transition for two-dimensional, disordered, hard-core bosons

    Full text link
    We introduce two novel quantum Monte Carlo methods and employ them to study the superfluid-insulator transition in a two-dimensional system of hard-core bosons. One of the methods is appropriate for zero temperature and is based upon Green's function Monte Carlo; the other is a finite-temperature world-line cluster algorithm. In each case we find that the dynamical exponent is consistent with the theoretical prediction of z=2z=2 by Fisher and co-workers.Comment: Revtex, 10 pages, 3 figures (postscript files attached at end, separated by %%%%%% Fig # %%%%%, where # is 1-3). LA-UR-94-270

    Isotropic Spin Wave Theory of Short-Range Magnetic Order

    Full text link
    We present an isotropic spin wave (ISW) theory of short-range order in Heisenberg magnets, and apply it to square lattice S=1/2 and S=1 antiferromagnets. Our theory has three identical (isotropic) spin wave modes, whereas the conventional spin wave theory has two transverse and one longitudinal mode. We calculate temperature dependences of various thermodynamic observables analytically and find good (several per cent) agreement with independently obtained numerical results in a broad temperature range.Comment: 4 pages, REVTeX v3 with 3 embedded PostScript figure

    The Two-Dimensional S=1 Quantum Heisenberg Antiferromagnet at Finite Temperatures

    Full text link
    The temperature dependence of the correlation length, susceptibilities and the magnetic structure factor of the two-dimensional spin-1 square lattice quantum Heisenberg antiferromagnet are computed by the quantum Monte Carlo loop algorithm (QMC). In the experimentally relevant temperature regime the theoretically predicted asymptotic low temperature behavior is found to be not valid. The QMC results however, agree reasonably well with the experimental measurements of La2NiO4 even without considering anisotropies in the exchange interactions.Comment: 4 Pages, 1 table, 4 figure

    Critical dynamics of a spin-5/2 2D isotropic antiferromagnet

    Full text link
    We report a neutron scattering study of the dynamic spin correlations in Rb2_2MnF4_4, a two-dimensional spin-5/2 antiferromagnet. By tuning an external magnetic field to the value for the spin-flop line, we reduce the effective spin anisotropy to essentially zero, thereby obtaining a nearly ideal two-dimensional isotropic antiferromagnet. From the shape of the quasielastic peak as a function of temperature, we demonstrate dynamic scaling for this system and find a value for the dynamical exponent zz. We compare these results to theoretical predictions for the dynamic behavior of the two-dimensional Heisenberg model, in which deviations from z=1z=1 provide a measure of the corrections to scaling.Comment: 5 pages, 4 figures. Submitted to Physical Review B, Rapid Communication

    Superconductor-Insulator Transition in a Disordered Electronic System

    Full text link
    We study an electronic model of a 2D superconductor with onsite randomness using Quantum Monte Carlo simulations. The superfluid density is used to track the destruction of superconductivity in the ground state with increasing disorder. The non-superconducting state is identified as an insulator from the temperature dependence of its d.c. resistivity. The value of σdc\sigma_{\rm dc} at the superconductor-insulator transition appears to be non-universal.Comment: PostScript, 4 pages, figures include

    Knight Shift Anomalies in Heavy Electron Materials

    Full text link
    We calculate non-linear Knight Shift KK vs. susceptibility χ\chi anomalies for Ce ions possessing local moments in metals. The ions are modeled with the Anderson Hamiltonian and studied within the non-crossing approximation (NCA). The Kvs.χK-vs.- \chi non-linearity diminishes with decreasing Kondo temperature T0T_0 and nuclear spin- local moment separation. Treating the Ce ions as an incoherent array in CeSn3_3, we find excellent agreement with the observed Sn K(T)K(T) data.Comment: 4 pages, Revtex, 3 figures available upon request from [email protected]

    Optical Absorption of CuO3_3 antiferromagnetic chains at finite temperatures

    Full text link
    We use a high-statistic quantum Monte Carlo and Maximum Entropy regularization method to compute the dynamical energy correlation function (DECF) of the one-dimensional (1D) S=1/2S=1/2 antiferromagnetic Heisenberg model at finite temperatures. We also present a finite temperature analytical ansatz for the DECF which is in very good agreement with the numerical data in all the considered temperature range. From these results, and from a finite temperature generalisation of the mechanism proposed by Lorenzana and Sawatsky [Phys. Rev. Lett. {\bf 74}, 1867 (1995)], we compute the line shape for the optical absorption spectra of multimagnon excitations assisted by phonons for quasi 1D compounds. The line shape has two contributions analogous to the Stokes and anti-Stokes process of Raman scattering. Our low temperature data is in good agreement with optical absorption experiments of CuO3_3 chains in Sr2_2CuO3_3. Our finite temperature results provide a non trivial prediction on the dynamics of the Heisenberg model at finite temperatures that is easy to verify experimentally.Comment: 7 pages, 5 figure

    A Gaussian Theory of Superfluid--Bose-Glass Phase Transition

    Full text link
    We show that gaussian quantum fluctuations, even if infinitesimal, are sufficient to destroy the superfluidity of a disordered boson system in 1D and 2D. The critical disorder is thus finite no matter how small the repulsion is between particles. Within the gaussian approximation, we study the nature of the elementary excitations, including their density of states and mobility edge transition. We give the gaussian exponent η\eta at criticality in 1D and show that its ratio to η\eta of the pure system is universal.Comment: Revtex 3.0, 11 pages (4 figures will be sent through airmail upon request

    Evolution of the Density of States Gap in a Disordered Superconductor

    Full text link
    It has only recently been possible to study the superconducting state in the attractive Hubbard Hamiltonian via a direct observation of the formation of a gap in the density of states N(w). Here we determine the effect of random chemical potentials on N(w) and show that at weak coupling, disorder closes the gap concurrently with the destruction of superconductivity. At larger, but still intermediate coupling, a pseudo-gap in N(w) remains even well beyond the point at which off-diagonal long range order vanishes. This change in the elementary excitations of the insulating phase corresponds to a crossover between Fermi- and Bose-Insulators. These calculations represent the first computation of the density of states in a finite dimensional disordered fermion model via the Quantum Monte Carlo and maximum entropy methods.Comment: 4 pages, 4 figure
    corecore